Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations
نویسنده
چکیده
We study the properties of three families of exponential Riordan arrays related to the Stirling numbers of the first and second kind. We relate these exponential Riordan arrays to the coefficients of families of orthogonal polynomials. We calculate the Hankel transforms of the moments of these orthogonal polynomials. We show that the Jacobi coefficients of two of the matrices studied satisfy generalized Toda chain equations. We finish by defining and characterizing the elements of an exponential Riordan array associated to generalized Stirling numbers studied by Lang.
منابع مشابه
Generalized Stirling numbers, exponential Riordan arrays and orthogonal polynomials
We define a generalization of the Stirling numbers of the second kind, which depends on two parameters. The matrices of integers that result are exponential Riordan arrays. We explore links to orthogonal polynomials by studying the production matrices of these Riordan arrays. Generalized Bell numbers are also defined, again depending on two parameters, and we determine the Hankel transform of t...
متن کاملThe Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms
with u0 = 0, where the dot indicates differentiation with respect to t. In this note, we shall show how solutions to this equation can be formulated in the context of exponential Riordan arrays. The Riordan arrays we shall consider may be considered as parameterised (or “time”-dependent) Riordan arrays. We have already considered parameterized Riordan arrays [1], exploring the links between the...
متن کاملA Study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms
We study integer sequences and transforms that operate on them. Many of these transforms are defined by triangular arrays of integers, with a particular focus on Riordan arrays and Pascal-like arrays. In order to explore the structure of these transforms, use is made of methods coming from the theory of continued fractions, hypergeometric functions, orthogonal polynomials and most importantly f...
متن کاملOn a Family of Generalized Pascal Triangles Defined by Exponential Riordan Arrays
We introduce a family of number triangles defined by exponential Riordan arrays, which generalize Pascal’s triangle. We characterize the row sums and central coefficients of these triangles, and define and study a set of generalized Catalan numbers. We establish links to the Hermite, Laguerre and Bessel polynomials, as well as links to the Narayana and Lah numbers.
متن کاملRiordan arrays and harmonic number identities
Let the numbers P (r, n, k) be defined by P (r, n, k) := Pr ( H n −H (1) k , · · · , H (r) n −H (r) k ) , where Pr(x1, · · · , xr) = (−1)Yr(−0!x1,−1!x2, · · · ,−(r− 1)!xr) and Yr are the exponential complete Bell polynomials. By observing that the numbers P (r, n, k) generate two Riordan arrays, we establish several general summation formulas, from which series of harmonic number identities are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014